Characteristic finite-difference WENO scheme for multicomponent compressible fluid analysis: Overestimated quasi-conservative formulation maintaining equilibriums of velocity, pressure, and temperature

Taku Nonomura, Kozo Fujii

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The characteristic-interpolation-based finite-difference weighted essentially non-oscillatory (WENO) scheme, which maintains the equilibriums of velocity, pressure, and temperature, is implemented to simulate compressible multicomponent flow fields. We propose the overestimated quasi-conservative form of the characteristic-interpolation-based finite-difference WENO scheme. The proposed WENO scheme is written in the split form that has the consistent and dissipation parts of the numerical flux. The dissipation part of the numerical flux is in the conservative form to maintain the conservation of conservative variables. The scheme implemented in this study can maintain the equilibriums of velocity, pressure, and temperature in various one- and two-dimensional problems. The results of the present studies provide new insights into the vector form of numerical dissipation.

Original languageEnglish
Pages (from-to)358-388
Number of pages31
JournalJournal of Computational Physics
Volume340
DOIs
Publication statusPublished - 2017 Jul 1

Keywords

  • Multicomponent flow
  • Pressure equilibrium
  • WENO

ASJC Scopus subject areas

  • Numerical Analysis
  • Modelling and Simulation
  • Physics and Astronomy (miscellaneous)
  • Physics and Astronomy(all)
  • Computer Science Applications
  • Computational Mathematics
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Characteristic finite-difference WENO scheme for multicomponent compressible fluid analysis: Overestimated quasi-conservative formulation maintaining equilibriums of velocity, pressure, and temperature'. Together they form a unique fingerprint.

Cite this