Chaotically oscillating interfaces in a parametrically forced system

Miki U. Kobayashi, Tsuyoshi Mizuguchi

    Research output: Contribution to journalArticlepeer-review

    6 Citations (Scopus)


    Structures and motions of a single interface exhibiting chaotic behavior are studied in the one-dimensional parametrically forced complex Ginzburg-Landau equation. There exist two kinds of chaotic interfaces whose differences are characterized by their chiral symmetry and the diffusivity of their motion. The transition between these behaviors is also investigated from the viewpoint of singularities of several dynamical variables, such as the diffusion constant, the resident time to each state, and the maximum trapping time to the unstable solution.

    Original languageEnglish
    Article number016212
    JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
    Issue number1
    Publication statusPublished - 2006 Jan 1

    ASJC Scopus subject areas

    • Statistical and Nonlinear Physics
    • Statistics and Probability
    • Condensed Matter Physics


    Dive into the research topics of 'Chaotically oscillating interfaces in a parametrically forced system'. Together they form a unique fingerprint.

    Cite this