Chaos of energetic positron orbits in a dipole magnetic field and its potential application to a new injection scheme

H. Saitoh, Z. Yoshida, Y. Yano, M. Nishiura, Y. Kawazura, J. Horn-Stanja, T. Sunn Pedersen

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

We study the behavior of high-energy positrons emitted from a radioactive source in a magnetospheric dipole field configuration. Because the conservation of the first and second adiabatic invariants is easily destroyed in a strongly inhomogeneous dipole field for high-energy charged particles, the positron orbits are nonintegrable, resulting in chaotic motions. In the geometry of a typical magnetospheric levitated dipole experiment, it is shown that a considerable ratio of positrons from a Na22 source, located at the edge of the confinement region, has chaotic long orbit lengths before annihilation. These particles make multiple toroidal circulations and form a hollow toroidal positron cloud. Experiments with a small Na22 source in the Ring Trap 1 (RT-1) device demonstrated the existence of such long-lived positrons in a dipole field. Such a chaotic behavior of high-energy particles is potentially applicable to the formation of a dense toroidal positron cloud in the strong-field region of the dipole field in future studies.

Original languageEnglish
Article number043203
JournalPhysical Review E
Volume94
Issue number4
DOIs
Publication statusPublished - 2016 Oct 19
Externally publishedYes

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Chaos of energetic positron orbits in a dipole magnetic field and its potential application to a new injection scheme'. Together they form a unique fingerprint.

Cite this