Channel shape and interpoly dielectric material effects on electrical characteristics of floating-gate-type three-dimensional fin channel flash memories

Yongxun Liu, Toshihide Nabatame, Num Nguyen, Takashi Matsukawa, Kazuhiko Endo, Shinichi O'uchi, Junichi Tsukada, Hiromi Yamauchi, Yuki Ishikawa, Wataru Mizubayashi, Yukinori Morita, Shinji Migita, Hiroyuki Ota, Toyohiro Chikyow, Meishoku Masahara

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Floating-gate (FG)-type three-dimensional (3D) fin channel flash memories with triangular fin (TF) and rectangular fin (RF) channels and different interpoly dielectric (IPD) materials have been successfully fabricated using (100)- and (110)-oriented silicon-on-insulator (SOI) wafers and orientation-dependent wet etching. The electrical characteristics of the fabricated FG-type 3D fin channel flash memories including threshold voltage (Vt) variability, program/erase (P/E) speed, memory window, endurance, and data retention at room temperature and 85 °C have been comparatively investigated. A higher P/E speed, a larger memory window, and a lower-voltage operation are experimentally obtained in the TF channel flash memories with an Al2O3-nitride-oxide (ANO) IPD layer (TF-ANO) than in the RF channel ones with the same ANO IPD layer (RFANO) and the TF channel ones with an oxide-nitride-oxide (ONO) IPD layer (TF-ONO). The larger memory window and lower-voltage operation of TF-ANO flash memories are due to the high-k effect of the Al2O3 layer and the electric field enhancement at the sharp foot edges of the TF channels. It was also found that data retention for all fabricated FG-type 3D fin channel flash memories shows a weak dependence on temperature.

Original languageEnglish
Article number04DD04
JournalJapanese journal of applied physics
Volume54
Issue number4
DOIs
Publication statusPublished - 2015 Apr 1
Externally publishedYes

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Channel shape and interpoly dielectric material effects on electrical characteristics of floating-gate-type three-dimensional fin channel flash memories'. Together they form a unique fingerprint.

  • Cite this

    Liu, Y., Nabatame, T., Nguyen, N., Matsukawa, T., Endo, K., O'uchi, S., Tsukada, J., Yamauchi, H., Ishikawa, Y., Mizubayashi, W., Morita, Y., Migita, S., Ota, H., Chikyow, T., & Masahara, M. (2015). Channel shape and interpoly dielectric material effects on electrical characteristics of floating-gate-type three-dimensional fin channel flash memories. Japanese journal of applied physics, 54(4), [04DD04]. https://doi.org/10.7567/JJAP.54.04DD04