Change in crystal structure and physical properties of the Multiferroics YMnO3 single crystals by Strong gravitational field

M. Tokuda, M. Weijian, S. Hayami, A. Yoshiasa, T. Mashimo

Research output: Contribution to journalConference articlepeer-review

1 Citation (Scopus)

Abstract

Many researchers have studied the multiferroicity of the hexagonal RMnO3 (R: rare-earth element) for both applications and fundamental studies. To investigate the relationship between the structure and physical properties of materials, some people apply the chemical pressure effect. The procedure of chemical pressure effect involves substituting rare-earth elements for ones which have a different ionic radius. Mashimo et al. have developed a higherature ultracentrifuge apparatus that can generate extended duration strong gravitational field in excess of 106 G under a wide range of temperatures (up to 500°C). Strong gravitational fields directly act on each atom as a different body force. This can cause the change in crystal structure. Thus, we subjected YMnO3 single crystal to strong gravity experiments (0.78×106 G, 400°C, 2 h) and investigated the resulting changes in the crystal structure and physical properties of the gravity sample. The single crystal four-circle X-ray diffraction measurements revealed the change in the nearest neighboring Mn-Mn and M-O bond distances. The temperature dependence of magnetic susceptibility by SQUID showed the change in the magnetic anisotropy of gravity sample.

Original languageEnglish
Article number072001
JournalJournal of Physics: Conference Series
Volume807
Issue number7
DOIs
Publication statusPublished - 2017 Apr 6
Event18th International Conference on Strongly Correlated Electron Systems, SCES 2016 - Hangzhou, China
Duration: 2016 May 92016 May 13

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Change in crystal structure and physical properties of the Multiferroics YMnO<sub>3</sub> single crystals by Strong gravitational field'. Together they form a unique fingerprint.

Cite this