Central nervous system-specific deletion of transcription factor Nrf1 causes progressive motor neuronal dysfunction

Akira Kobayashi, Takako Tsukide, Tomohiro Miyasaka, Tomoko Morita, Tatsuya Mizoroki, Yoshiro Saito, Yasuo Ihara, Akihiko Takashima, Noriko Noguchi, Akiyoshi Fukamizu, Yosuke Hirotsu, Makiko Ohtsuji, Fumiki Katsuoka, Masayuki Yamamoto

Research output: Contribution to journalArticlepeer-review

69 Citations (Scopus)


Cap'n'Collar (CNC) proteins heterodimerize with small Maf proteins and regulate the transcription of various genes. Small Maf-deficient mice develop severe neurodegeneration, and it remains unclear whether CNC proteins are involved in this process. In this study, we examined the contribution of Nrf1, one of the CNC proteins, to neuronal homeostasis in vivo. As Nrf1 gene knockout mice are embryonic lethal, we developed a central nervous system (CNS)-specific Nrf1 knockout (CKO) mouse line using mice bearing an Nrf1flox allele and Nestin-Cre allele. At birth, the CKO mice appeared indistinguishable from control mice, but thereafter they showed progressive motor ataxia and severe weight loss. All Nrf1 CKO mice died within 3weeks. These phenotypes are similar to those reported in small Maf-deficient mice, suggesting the presence of collaboration between Nrf1 and small Maf proteins. We also found aberrant accumulation of polyubiquitinated proteins in various CNS regions and apparent neuronal loss in the hippocampus of Nrf1 CKO mice. An oxidative stress marker was accumulated in the spinal cords of the mice, but the expression patterns of oxidative stress response genes regulated by Nrf2 did not change substantially. These results show that Nrf1 sustains the CNS homeostasis through regulating target genes distinct from those regulated by Nrf2.

Original languageEnglish
Pages (from-to)692-703
Number of pages12
JournalGenes to Cells
Issue number6
Publication statusPublished - 2011 Jun
Externally publishedYes

ASJC Scopus subject areas

  • Genetics
  • Cell Biology


Dive into the research topics of 'Central nervous system-specific deletion of transcription factor Nrf1 causes progressive motor neuronal dysfunction'. Together they form a unique fingerprint.

Cite this