C-X-C Motif Chemokine Receptor 3 Splice Variants Differentially Activate Beta-Arrestins to Regulate Downstream Signaling Pathways s

Jeffrey S. Smith, Priya Alagesan, Nimit K. Desai, Thomas F. Pack, Jiao Hui Wu, Asuka Inoue, Neil J. Freedman, Sudarshan Rajagopal

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Biased agonism, the ability of different ligands for the same receptor to selectively activate some signaling pathways while blocking others, is now an established paradigm for G protein-coupled receptor signaling. One group of receptors in which endogenous bias is critical is the chemokine system, consisting of over 50 ligands and 20 receptors that bind one another with significant promiscuity. We have previously demonstrated that ligands for the same receptor can cause biased signaling responses. The goal of this study was to identify mechanisms that could underlie biased signaling between different receptor splice variants. The C-X-C motif chemokine receptor 3 (CXCR3) has two splice variants, CXCR3A and CXCR3B, which differ by 51 amino acids at its N-terminus. Consistent with an earlier study, we found that C-X-C motif chemokine ligands 4, 9, 10, and 11 all activated Gai at CXCR3A, while at CXCR3B these ligands demonstrated no measurable Gai or Gas activity. b-arrestin (barr) was recruited at a reduced level to CXCR3B relative to CXCR3A, which was also associated with differences in barr2 conformation. barr2 recruitment to CXCR3A was attenuated by both G protein receptor kinase (GRK) 2/3 and GRK5/6 knockdown, while only GRK2/3 knockdown blunted recruitment to CXCR3B. Extracellular regulated kinase 1/2 phosphorylation downstream from CXCR3A and CXCR3B was increased and decreased, respectively, by barr1/2 knockout. The splice variants also differentially activated transcriptional reporters. These findings demonstrate that differential splicing of CXCR3 results in biased responses associated with distinct patterns of barr conformation and recruitment. Differential splicing may serve as a common mechanism for generating biased signaling and provides insights into how chemokine receptor signaling can be modulated post-transcriptionally.

Original languageEnglish
Pages (from-to)136-150
Number of pages15
JournalMolecular pharmacology
Volume92
Issue number2
DOIs
Publication statusPublished - 2017 Aug

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology

Fingerprint Dive into the research topics of 'C-X-C Motif Chemokine Receptor 3 Splice Variants Differentially Activate Beta-Arrestins to Regulate Downstream Signaling Pathways <sup>s</sup>'. Together they form a unique fingerprint.

Cite this