Buoyant hydrous mantle plume from the mantle transition zone

Takeshi Kuritani, Qun Ke Xia, Jun Ichi Kimura, Jia Liu, Kenji Shimizu, Takayuki Ushikubo, Dapeng Zhao, Mitsuhiro Nakagawa, Shumpei Yoshimura

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)


Magmatism at some intraplate volcanoes and large igneous provinces (LIPs) in continental areas may originate from hydrous mantle upwelling (i.e. a plume) from the mantle transition zone (MTZ) at 410–660 km depths in the Earth’s deep interior. However, the ultimate origin of the magmatism, i.e. why mantle plumes could have been generated at the MTZ, remains unclear. Here, we study the buoyancy of a plume by investigating basalts from the Changbaishan volcano, beneath which a mantle plume from the hydrous MTZ is observed via seismology. Based on carefully determined water contents of the basalts, the potential temperature of the source mantle is estimated to be 1310–1400 °C, which is within the range of the normal upper mantle temperature. This observation suggests that the mantle plume did not have a significant excess heat, and that the plume upwelled because of buoyancy resulting from water supplied from the Pacific slab in the MTZ. Such a hydrous mantle plume can account for the formation of extremely hydrous LIP magmatism. The water was originally sourced from a stagnant slab and stored in the MTZ, and then upwelled irrespective of the presence or absence of a deep thermal plume.

Original languageEnglish
Article number6549
JournalScientific reports
Issue number1
Publication statusPublished - 2019 Dec 1

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Buoyant hydrous mantle plume from the mantle transition zone'. Together they form a unique fingerprint.

Cite this