Brass-texture induced grain structure evolution in room temperature rolled ODS copper

S. M.S. Aghamiri, N. Oono, S. Ukai, R. Kasada, H. Noto, Y. Hishinuma, T. Muroga

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Currently, advanced ODS copper alloy is under study as a potential fusion material providing good mechanical properties. In this work, in order to develop a high performance ODS copper containing 0.5 wt% Y 2 O 3 oxide particles, the effect of room temperature rolling and subsequent annealing on the grain structure evolution, texture development and tensile properties are studied using EBSD, TEM and tensile tests. Microstructure evolution studies show the grain structure coarsens by enhancing the Brass texture during increase of rolling reduction and a unique single crystal-like brass-texture deformed structure is achieved after 80% rolling reduction. We found the deformation mechanism of partial slip by [Formula presented]〈211〉 dislocations facilitated by the pinning of [Formula presented]〈101〉 perfect dislocations through fine oxide particles is responsible for formation of Brass texture during room temperature rolling. Furthermore, the recrystallization of ODS copper retards to high temperature of ~700 °C and shows a fine-grained microstructure with different orientations of Goss, Brass, S and Copper. Evaluation of microstructure-mechanical properties of the recrystallized samples expresses that the bimodal grain size distribution at 800 °C for 30 min offers a good tensile strength-duc t ility (UTS: 491 MPa, el t : 19%) at ambient temperature.

Original languageEnglish
Pages (from-to)118-128
Number of pages11
JournalMaterials Science and Engineering A
Volume749
DOIs
Publication statusPublished - 2019 Mar 11

Keywords

  • Brass texture
  • Grain structure
  • ODS copper
  • Rolling and recrystallization
  • Tensile properties

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Brass-texture induced grain structure evolution in room temperature rolled ODS copper'. Together they form a unique fingerprint.

  • Cite this