### Abstract

The group-representation theory guarantees that the (tangent) stiffness matrix of symmetric structures can be put into a block-diagonal form by means of a suitable (local) geometric transformation. This transformation decomposes the linear equilibrium equation of symmetric structures into a number of independent equations, and hence is advantageous for parallel analysis. The block-diagonalization method, with so far has mainly been applied for translational displacements, is extended here to rotational ones. The interrelationship between the symmetries of rotational and translational displacements is investigated by means of group theory to arrive at the transformation matrix of rotational ones.

Original language | English |
---|---|

Pages (from-to) | 27-36 |

Number of pages | 10 |

Journal | Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers |

Issue number | 489 pt 1-27 |

Publication status | Published - 1994 Jan 1 |

Externally published | Yes |

### ASJC Scopus subject areas

- Engineering(all)

## Fingerprint Dive into the research topics of 'Block-diagonalization method for symmetric structures with rotational displacements'. Together they form a unique fingerprint.

## Cite this

*Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers*, (489 pt 1-27), 27-36.