Balloon type elasticity sensing for left ventricle of small laboratory animal.

Ryohei Ishii, Mitsuru Higashimori, Kenjiro Tadakuma, Makoto Kaneko, Shunsuke Tamaki, Yasushi Sakata, Kazuhiro Yamamoto

Research output: Contribution to journalArticle

Abstract

This paper describes an elasticity sensing system for left ventricle of small laboratory animal. We first show the basic concept of the proposed method, where a ring shaped specimen is dilated by a balloon type probe using a pressure based control, and the elasticity of the specimen is estimated by using the stress and strain information. We introduce a dual cylinder model for approximating the strengths of the specimen's material and the balloon. Based on this model, we can derive Young's modulus of the specimen. After explaining the developed experimental system, we show a couple of experimental results using rats and mice, where HFPEF (Heart Failure Preserved Ejection Fraction) group can be distinguished from a normal group.

Original languageEnglish
Pages (from-to)904-907
Number of pages4
JournalConference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
Volume2011
Publication statusPublished - 2011 Dec 1

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Balloon type elasticity sensing for left ventricle of small laboratory animal.'. Together they form a unique fingerprint.

  • Cite this