Ballistic electron emission microscopy studies on Au/CaF2/n-Si(111) heterostructures

Touru Sumiya, Tadao Miura, Shun Ichiro Tanaka

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Electron transport phenomena across Au/CaF2/n-Si (111) heterostructures, in which calcium fluoride (CaF2) [about two monolayers (ML)] was introduced into the interface at room temperature (RT), 550°C, and 700°C, have been studied by ballistic electron emission microscopy (BEEM) and ballistic electron emission spectroscopy (BEES). Not only the Au growth but also the electron transport properties strongly depend upon the growth temperatures of CaF2 intralayers. In the case of CaF2 growth at RT, CaF2 molecules will exist on the surface of the 50 ML Au/2 ML CaF2 (RT)/n-Si(111) sample. BEES clearly shows that the Schottky barrier of the intermixed layer on Si (111) is about 1.06 V which is higher than the value of 0.73 V for Au/Si (111). At 550 and 700°C, thin, flat Au islands, each about 0.15 nm thick, grow in stacks on the CaF2 layer. The threshold voltage of the BEEM current for an insulating CaF2 intralayer, which is about 3.58 V, is obtained only in the sample in which CaF2 was deposited at 700°C. Furthermore, it was found that an inhomogeneous coverage of CaF2 exists on the sample. By using the CaF2 intralayer formed at 700°C, we modified the electronic potential barrier on the nanometer scale.

Original languageEnglish
Pages (from-to)2653-2662
Number of pages10
JournalJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
Issue number4
Publication statusPublished - 1998
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films


Dive into the research topics of 'Ballistic electron emission microscopy studies on Au/CaF2/n-Si(111) heterostructures'. Together they form a unique fingerprint.

Cite this