Axle length effect on photoinduced electron transfer in triad rotaxane with porphyrin, [60]fullerene, and triphenylamine

Atula S.D. Sandanayaka, Hisahiro Sasabe, Yasuyuki Araki, Nobuhiro Kihara, Yoshio Furusho, Toshikazu Takata, Osamu Ito

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)


Photoinduced multiple electron-transfer processes of a newly synthesized rotaxane with one acceptor and two donors are studied with the time-resolved fluorescence and absorption methods. In this rotaxane, zinc porphyrin (ZnP) with a crown-ether necklace is employed as a photosensitized electron donor; through the crown-ether, a short axle with C60 and triphenylamine (TPA) at both terminals is penetrating as an electron acceptor and a hole-shift, respectively (abbreviated as (ZnP;C60-(AS)-TPA) Rot). The time-resolved fluorescence and transient absorption measurements reveal that the through-space electron-transfer processes take place via the excited states of the ZnP unit to the spatially arranged C 60 moiety, giving the radical ion pair (ZnṖ+;C 60--(AS)-TPA)Rot in polar solvents. Consecutively, (ZnP;C60--(AS)-TPA ̇+)Rot is also generated by the through-space hole-shift between ZnP and TPA, in addition to the through-bond charge separation via the excited state of the C60 moiety. Both radial ion pairs have lifetimes of 320-420 ns, which are longer than those of the previously reported similar rotaxane with cationic longer axle (150-170 ns).

Original languageEnglish
Pages (from-to)5242-5250
Number of pages9
JournalJournal of Physical Chemistry A
Issue number16
Publication statusPublished - 2010 Apr 29

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry


Dive into the research topics of 'Axle length effect on photoinduced electron transfer in triad rotaxane with porphyrin, [60]fullerene, and triphenylamine'. Together they form a unique fingerprint.

Cite this