Automated acquisition of explainable knowledge from unannotated histopathology images

Yoichiro Yamamoto, Toyonori Tsuzuki, Jun Akatsuka, Masao Ueki, Hiromu Morikawa, Yasushi Numata, Taishi Takahara, Takuji Tsuyuki, Kotaro Tsutsumi, Ryuto Nakazawa, Akira Shimizu, Ichiro Maeda, Shinichi Tsuchiya, Hiroyuki Kanno, Yukihiro Kondo, Manabu Fukumoto, Gen Tamiya, Naonori Ueda, Go Kimura

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Deep learning algorithms have been successfully used in medical image classification. In the next stage, the technology of acquiring explainable knowledge from medical images is highly desired. Here we show that deep learning algorithm enables automated acquisition of explainable features from diagnostic annotation-free histopathology images. We compare the prediction accuracy of prostate cancer recurrence using our algorithm-generated features with that of diagnosis by expert pathologists using established criteria on 13,188 whole-mount pathology images consisting of over 86 billion image patches. Our method not only reveals findings established by humans but also features that have not been recognized, showing higher accuracy than human in prognostic prediction. Combining both our algorithm-generated features and human-established criteria predicts the recurrence more accurately than using either method alone. We confirm robustness of our method using external validation datasets including 2276 pathology images. This study opens up fields of machine learning analysis for discovering uncharted knowledge.

Original languageEnglish
Article number5642
JournalNature communications
Volume10
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Automated acquisition of explainable knowledge from unannotated histopathology images'. Together they form a unique fingerprint.

  • Cite this

    Yamamoto, Y., Tsuzuki, T., Akatsuka, J., Ueki, M., Morikawa, H., Numata, Y., Takahara, T., Tsuyuki, T., Tsutsumi, K., Nakazawa, R., Shimizu, A., Maeda, I., Tsuchiya, S., Kanno, H., Kondo, Y., Fukumoto, M., Tamiya, G., Ueda, N., & Kimura, G. (2019). Automated acquisition of explainable knowledge from unannotated histopathology images. Nature communications, 10(1), [5642]. https://doi.org/10.1038/s41467-019-13647-8