Atypical protein kinase C iota (PKC?/?) ensures mammalian development by establishing the maternal-fetal exchange interface

Bhaswati Bhattacharya, Pratik Home, Pratik Home, Avishek Ganguly, Soma Ray, Ananya Ghosh, Md Rashedul Islam, Valerie French, Valerie French, Courtney Marsh, Courtney Marsh, Sumedha Gunewardena, Hiroaki Okae, Takahiro Arima, Soumen Paul, Soumen Paul, Soumen Paul

Research output: Contribution to journalArticlepeer-review

Abstract

In utero mammalian development relies on the establishment of the maternal-fetal exchange interface, which ensures transportation of nutrients and gases between the mother and the fetus. This exchange interface is established via development of multinucleated syncytiotrophoblast cells (SynTs) during placentation. In mice, SynTs develop via differentiation of the trophoblast stem cell-like progenitor cells (TSPCs) of the placenta primordium, and in humans, SynTs are developed via differentiation of villous cytotrophoblast (CTB) progenitors. Despite the critical need in pregnancy progression, conserved signaling mechanisms that ensure SynT development are poorly understood. Herein, we show that atypical protein kinase C iota (PKCγ/ι) plays an essential role in establishing the SynT differentiation program in trophoblast progenitors. Loss of PKCγ/ι in the mouse TSPCs abrogates SynT development, leading to embryonic death at approximately embryonic day 9.0 (E9.0).We also show that PKCγ/ι-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. PKCγ/ι is selectively expressed in the first-trimester CTBs of a developing human placenta. Furthermore, loss of PKCγ/ι in CTB-derived human trophoblast stem cells (human TSCs) impairs their SynT differentiation potential both in vitro and after transplantation in immunocompromised mice. Our mechanistic analyses indicate that PKCγ/ι signaling maintains expression of GCM1, GATA2, and PPARγ, which are key transcription factors to instigate SynT differentiation programs in both mouse and human trophoblast progenitors. Our study uncovers a conserved molecular mechanism, in which PKCγ/ι signaling regulates establishment of the maternal-fetal exchange surface by promoting trophoblast progenitor-to-SynT transition during placentation.

Original languageEnglish
Pages (from-to)14280-14291
Number of pages12
JournalProceedings of the National Academy of Sciences of the United States of America
Volume117
Issue number25
DOIs
Publication statusPublished - 2020 Jun 23

Keywords

  • Cytotrophoblast
  • Human trophoblast stem cell
  • Placenta
  • Protein kinase Cγ/ι
  • Syncytiotrophoblast

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Atypical protein kinase C iota (PKC?/?) ensures mammalian development by establishing the maternal-fetal exchange interface'. Together they form a unique fingerprint.

Cite this