Attempt at climbing of spiral staircase for tracked vehicles using reaction force of stairs' handrail

Yuto Ohashi, Shotaro Kojima, Kazunori Ohno, Yoshito Okada, Ryunosuke Hamada, Takahiro Suzuki, Satoshi Tadokoro

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Disaster response robots are important for the investigation of nuclear power and chemical plants. To investigate an area, robots are required to climb straight or spiral staircases because equipment components are installed on different-level floors, which are connected by stairs. Installed stairs are narrow and steep because the location of equipment components is given priority in the environment inside plants. It is considerably difficult for a tracked vehicle, which has high mobility on stairs or rough terrain, to climb spiral staircases. We propose a method for a tracked vehicle to climb spiral staircases. A characteristic of the method is that the tracked vehicle uses the reaction force from a safety wall, which is installed to prevent objects from dropping down and damaging the equipment in plants. It is shown that the climbing motion is easy to perform using the wall without complicated control, as compared to when the wall is not used. The climbing motion of a robot on a spiral staircase using a wall is analyzed by employing a dynamic model. Experimental results show that it is possible to climb without slippage and at a high speed by maintaining contact along the wall. These results show that a tracked vehicle can access areas that could not be reached earlier through contact with the environment. Furthermore, it is considered that the climbing motion using contact with the environment can be applied to an autonomous mobile robot for automating inspection because complicated control is not required.

Original languageEnglish
Title of host publicationSII 2017 - 2017 IEEE/SICE International Symposium on System Integration
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages456-462
Number of pages7
ISBN (Electronic)9781538622636
DOIs
Publication statusPublished - 2018 Feb 1
Event2017 IEEE/SICE International Symposium on System Integration, SII 2017 - Taipei, Taiwan, Province of China
Duration: 2017 Dec 112017 Dec 14

Publication series

NameSII 2017 - 2017 IEEE/SICE International Symposium on System Integration
Volume2018-January

Other

Other2017 IEEE/SICE International Symposium on System Integration, SII 2017
Country/TerritoryTaiwan, Province of China
CityTaipei
Period17/12/1117/12/14

ASJC Scopus subject areas

  • Modelling and Simulation
  • Instrumentation
  • Artificial Intelligence
  • Computer Science Applications
  • Engineering (miscellaneous)
  • Materials Science (miscellaneous)
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Attempt at climbing of spiral staircase for tracked vehicles using reaction force of stairs' handrail'. Together they form a unique fingerprint.

Cite this