TY - JOUR
T1 - Asymptotics of solutions to the boundary-value problem for the Korteweg-de Vries-Burgers equation on a half-line
AU - Hayashi, Nakao
AU - Kaikina, Elena I.
AU - Shishmarev, Ilia A.
N1 - Funding Information:
One of the authors (I.A.S.) thanks the Departaménto de Ciencias Básicas del Instituto Tecnológico de Morelia for its kind hospitality and financial support during his stay in Mexico in March 2000. This work is part of Project 28471-E supported by the Consejo Nacional de Ciencia y Technología.
PY - 2002/1/15
Y1 - 2002/1/15
N2 - We study the following initial-boundary value problem for the Korteweg-de Vries-Burgers equation, ut + ( -1)α uux - uxx + (-1)α uxxx = 0, (x, t) ε R+ × R+, (0.1) u(x, 0) = u0(x), x ε R+, ∂xn(0, t) = 0, n = 0, α, t ε R+, where α = 0, 1. We prove that if the initial data u0 ε H0,ω ∩ H1,0, where Hs,k = {f ε L2; ∥f∥Hsk = ∥ 〈x〉k 〈i∂x〉s f∥L2 < ∞}, ω ε (1/2, 3/2), and the norm ∥u0∥H0 ω + ∥u0∥H1,0 is sufficiently small, then there exists a unique solution u ε C([0, ∞), H0,x) ∩ C((0, ∞), H1,ω) of the initial-boundary value problem (0.1), where x ε (0,1/2). Moreover, if the initial data are such that x1+μ u0(x) ε L1, μ = ω - 1/2, then there exists a constant A such that the solution has the asymptotics for t → ∞ uniformly with respect to x > 0, where α = 0, 1, Φ0 (q, t) = (q/π)e-q2, Φ1 (q,t) 1/2 π t) (e-q2) (2q t-1) + e-2q t.
AB - We study the following initial-boundary value problem for the Korteweg-de Vries-Burgers equation, ut + ( -1)α uux - uxx + (-1)α uxxx = 0, (x, t) ε R+ × R+, (0.1) u(x, 0) = u0(x), x ε R+, ∂xn(0, t) = 0, n = 0, α, t ε R+, where α = 0, 1. We prove that if the initial data u0 ε H0,ω ∩ H1,0, where Hs,k = {f ε L2; ∥f∥Hsk = ∥ 〈x〉k 〈i∂x〉s f∥L2 < ∞}, ω ε (1/2, 3/2), and the norm ∥u0∥H0 ω + ∥u0∥H1,0 is sufficiently small, then there exists a unique solution u ε C([0, ∞), H0,x) ∩ C((0, ∞), H1,ω) of the initial-boundary value problem (0.1), where x ε (0,1/2). Moreover, if the initial data are such that x1+μ u0(x) ε L1, μ = ω - 1/2, then there exists a constant A such that the solution has the asymptotics for t → ∞ uniformly with respect to x > 0, where α = 0, 1, Φ0 (q, t) = (q/π)e-q2, Φ1 (q,t) 1/2 π t) (e-q2) (2q t-1) + e-2q t.
KW - Dissipative nonlinear evolution equation
KW - Half-line
KW - Korteweg-de Vries-Burgers equation
KW - Large time asymptotics
UR - http://www.scopus.com/inward/record.url?scp=0037081587&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037081587&partnerID=8YFLogxK
U2 - 10.1006/jmaa.2001.7717
DO - 10.1006/jmaa.2001.7717
M3 - Article
AN - SCOPUS:0037081587
SN - 0022-247X
VL - 265
SP - 343
EP - 370
JO - Journal of Mathematical Analysis and Applications
JF - Journal of Mathematical Analysis and Applications
IS - 2
ER -