Asymmetry of Rb+ conduction emerged under bi-ionic conditions in epithelial maxi-K+ channels

Atsushi Ohsaga, Yoshimichi Murata, Yoshiaki Kondo, Riichiro Hira, Yoshio Maruyama

Research output: Contribution to journalArticle

Abstract

K+ channels permit more than one ion within their conducting pathway at any given moment and show a saturating single-file behavior. The conduction of Rb+ shows an unusual behavior, a so-called "Rb+ anomaly," and it has been used to probe the mechanism of the ion conduction through K+-selective channels. Under the bi-ionic condition of K+ and Rb+, we carried out patch-clamp single-channel current measurements in MaxiK+ channels from mouse submandibular acinar cells. Keeping only K+ on one side of the membrane while varying fractional Rb+ concentration on the opposite, we had a series of current-voltage relationships. It showed a characteristic inflection at which the ion conductance was divided into two components, one ascribed to pure K+ conduction and the other to K+ and Rb+ bi-ionic conduction. By analyzing the latter, we depicted that (1) the bi-ionic conductance showed a characteristic reduction curve as the Rb+ fractional concentration increased; (2) Rb + can bind the channel more tightly when it accesses from the outside than from the inside. Thus we conclude that such asymmetry of the Rb + binding determines the pattern of bi-ionic conductance reduction in K-selective channels.

Original languageEnglish
Pages (from-to)363-369
Number of pages7
JournalJournal of Physiological Sciences
Volume58
Issue number6
DOIs
Publication statusPublished - 2008 Dec

Keywords

  • MaxiK channels
  • Rb-induced anomalous conductance
  • Single-channel current

ASJC Scopus subject areas

  • Physiology

Fingerprint Dive into the research topics of 'Asymmetry of Rb<sup>+</sup> conduction emerged under bi-ionic conditions in epithelial maxi-K<sup>+</sup> channels'. Together they form a unique fingerprint.

  • Cite this