Abstract
A preconditioned numerical method for gas-liquid two-phase flows is applied to solve cavitating flow. The present method employs a finite-difference method of the dual time-stepping integration procedure and Roe 's flux difference splitting approximation with the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. The present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation, large density changes and incompressible flow characteristics at low Mach number. Two-dimensional internal flows through a backward-facing step duct, convergent-divergent nozzles and decelerating cascades are computed using this method. Comparisons of predicted and experimental results are provided and discussed.
Original language | English |
---|---|
Pages (from-to) | 605-612 |
Number of pages | 8 |
Journal | Journal of Fluids Engineering, Transactions of the ASME |
Volume | 126 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2004 Jul 1 |
ASJC Scopus subject areas
- Mechanical Engineering