TY - JOUR
T1 - Application of cross-linked salmon atelocollagen to the scaffold of human periodontal ligament cells
AU - Nagai, Nobuhiro
AU - Yunoki, Shunji
AU - Suzuki, Takeshi
AU - Sakata, Maiko
AU - Tajima, Kenji
AU - Munekata, Masanobu
N1 - Funding Information:
This work was supported by the Northern Advancement Center for Science and Technology (NOASTEC).
PY - 2004
Y1 - 2004
N2 - The purpose of this study was to investigate the application of salmon atelocollagen (SAC) to a scaffold. SAC has a low denaturation temperature and needs to be cross-linked before being used as a scaffold. In the present study, SAC was cross-linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) or dehydrothermal treatment (DHT). The material properties (degree of cross-linking and solubility in phosphate-buffered saline) of the SAC scaffolds cross-linked by EDC (EDC-SAC) and DHT (DHT-SAC) were evaluated. It was found that EDC-SAC had a high degree of cross-linking and high stability compared with DHT-SAC. Human periodontal ligament (HPDL) cells were cultured in the scaffolds for 2 weeks in vitro, and the activities (proliferation rate and alkaline phosphatase [ALP] activity) of HPDL cells cultured in EDC-SAC and DHT-SAC were compared with those cultured in bovine atelocollagen (BAC) scaffolds cross-linked by EDC (EDC-BAC) and DHT (DHT-BAC), respectively. The proliferation rate of HPDL cells cultured in EDC-SAC was equivalent to that in EDC-BAC, and the ALP activity in EDC-SAC was found to be significantly higher than that in EDC-BAC. In the cross-linking by DHT, the cell proliferation rate and the ALP activity in DHT-SAC were lower than those in DHT-BAC. DHT seemed to provide insufficient cross-linking, and DHT-SAC was found to be breakable and contractile, resulting in Jess cell activity. In contrast, there was no difference in the thermal stability, porous structure, and cell proliferation rate between EDC-SAC and EDC-BAC. In addition, the collagen helix of EDC-SAC was found to be partially denatured, and this structure resulted in the enhancement of ALP activity of HPDL cells compared with that using EDC-BAC. In conclusion, our results indicate that EDC-SAC could be used as a scaffold for in vitro culture.
AB - The purpose of this study was to investigate the application of salmon atelocollagen (SAC) to a scaffold. SAC has a low denaturation temperature and needs to be cross-linked before being used as a scaffold. In the present study, SAC was cross-linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) or dehydrothermal treatment (DHT). The material properties (degree of cross-linking and solubility in phosphate-buffered saline) of the SAC scaffolds cross-linked by EDC (EDC-SAC) and DHT (DHT-SAC) were evaluated. It was found that EDC-SAC had a high degree of cross-linking and high stability compared with DHT-SAC. Human periodontal ligament (HPDL) cells were cultured in the scaffolds for 2 weeks in vitro, and the activities (proliferation rate and alkaline phosphatase [ALP] activity) of HPDL cells cultured in EDC-SAC and DHT-SAC were compared with those cultured in bovine atelocollagen (BAC) scaffolds cross-linked by EDC (EDC-BAC) and DHT (DHT-BAC), respectively. The proliferation rate of HPDL cells cultured in EDC-SAC was equivalent to that in EDC-BAC, and the ALP activity in EDC-SAC was found to be significantly higher than that in EDC-BAC. In the cross-linking by DHT, the cell proliferation rate and the ALP activity in DHT-SAC were lower than those in DHT-BAC. DHT seemed to provide insufficient cross-linking, and DHT-SAC was found to be breakable and contractile, resulting in Jess cell activity. In contrast, there was no difference in the thermal stability, porous structure, and cell proliferation rate between EDC-SAC and EDC-BAC. In addition, the collagen helix of EDC-SAC was found to be partially denatured, and this structure resulted in the enhancement of ALP activity of HPDL cells compared with that using EDC-BAC. In conclusion, our results indicate that EDC-SAC could be used as a scaffold for in vitro culture.
KW - Carbodiimide
KW - Cross-linking
KW - Denatured collagen
KW - Periodontal ligament cells
KW - Salmon atelocollagen
KW - Scaffold
UR - http://www.scopus.com/inward/record.url?scp=3242803806&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3242803806&partnerID=8YFLogxK
U2 - 10.1016/S1389-1723(04)70224-8
DO - 10.1016/S1389-1723(04)70224-8
M3 - Review article
C2 - 16233648
AN - SCOPUS:3242803806
VL - 97
SP - 389
EP - 394
JO - Journal of Bioscience and Bioengineering
JF - Journal of Bioscience and Bioengineering
SN - 1389-1723
IS - 6
ER -