Anisotropic heat transfer characteristics of composite material enhanced with high thermal conductivity fiber

H. S. Gwon, S. H. Kim, R. Kasada, S. Konishi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

The target surface of divertor takes high heat flux from plasma in fusion reactor. Removal of heat generated on the surface of divertor is one of the most difficult problems that should be solved for realization of fusion reactor. Besides, high temperature heat transfer medium should be collected for the efficient utilization of energy. This study analyzed thermal conduction behavior of composite material for the application to the divertor target. Steady state analysis was conducted using finite element method. Fiber with circular cross section is arranged into matrix regularly or irregularly to express actually produced specimen. Mesh size of each model was 1μm, and directions of fiber to thermal conduction are 0, 45, 90 and degree, respectively. Uniform heat flux is applied to the top surface of each model, and temperature of the bottom surface in each model, is assumed to be controlled at 600°C, assuming a large capacity coolant at the stable temperature is fed to the surface. In the steady state, temperature on top surface of each model was measured 1μm apart. Thermal conductivity of each model was evaluated by average of the temperature. From results of analysis, calculated thermal conductivity of the composite was enhanced almost proportionally to volume fraction of fiber when heat flux and fiber are parallel. However, heat conduction was found to be affected by direction, distribution and arrangement of fiber. Heat conduction in the composite was found to be rather complicated and simple equation could not express it.

Original languageEnglish
Title of host publication2013 IEEE 25th Symposium on Fusion Engineering, SOFE 2013
DOIs
Publication statusPublished - 2013
Externally publishedYes
Event2013 IEEE 25th Symposium on Fusion Engineering, SOFE 2013 - San Francisco, CA, United States
Duration: 2013 Jun 102013 Jun 14

Publication series

Name2013 IEEE 25th Symposium on Fusion Engineering, SOFE 2013

Other

Other2013 IEEE 25th Symposium on Fusion Engineering, SOFE 2013
Country/TerritoryUnited States
CitySan Francisco, CA
Period13/6/1013/6/14

Keywords

  • Anisotropic
  • Composite material
  • Heat transfer characteristics
  • Thermal stress

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Anisotropic heat transfer characteristics of composite material enhanced with high thermal conductivity fiber'. Together they form a unique fingerprint.

Cite this