Ancestral protein reconstruction as a new field in protein engineering

Ayumu Konno, Tomohisa Ogawa, Tsuyoshi Shirai

    Research output: Chapter in Book/Report/Conference proceedingChapter

    1 Citation (Scopus)

    Abstract

    The extent of current research in ancient biology is not restricted by the presence of fossil records, owing to the developments in computational analysis and engineering techniques of proteins. Ancestral sequences of extant genes/proteins can be inferred with the molecular phylogeny reconstruction methods, which are mainly based on maximum-likelihood estimation. Once an ancestral sequence is determined, a reconstruction of the ancestral protein is not difficult by using the current protein engineering techniques, and reproduced protein can be experimentally tested either biochemically or biophysically. To date, such 'experimental molecular archeology' has been examined on several enzymes, elongation factor, photo-reactive proteins, nuclear receptor, and lectin, and largely helped to elucidate evolutionary processes of stability, specificity, and structure of the proteins. Although this method would promise a new field in protein engineering, several problems still remain to be solved, the largest among which should be accuracy of inferred ancestral sequence as a whole. In this chapter, the reported studies of ancestral protein reconstruction are reviewed with a focus on our recent results on the ancestral congerin, which is the ß-galactoside specific lectin of fish involved in the biological defense system. The reconstruction of ancestral congerin is important because two extant isoforms of this protein, congerins I and II, have been rapidly evolving, and their molecular properties and structures have been differentiating due to the natural selection pressures operating on the genes.

    Original languageEnglish
    Title of host publicationRibosomal Proteins and Protein Engineering
    Subtitle of host publicationDesign, Selection and Applications
    PublisherNova Science Publishers, Inc.
    Pages65-90
    Number of pages26
    ISBN (Print)9781607410058
    Publication statusPublished - 2010 Dec 1

    ASJC Scopus subject areas

    • Biochemistry, Genetics and Molecular Biology(all)

    Fingerprint Dive into the research topics of 'Ancestral protein reconstruction as a new field in protein engineering'. Together they form a unique fingerprint.

  • Cite this

    Konno, A., Ogawa, T., & Shirai, T. (2010). Ancestral protein reconstruction as a new field in protein engineering. In Ribosomal Proteins and Protein Engineering: Design, Selection and Applications (pp. 65-90). Nova Science Publishers, Inc..