Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts

Yuji Shiba, Toshihito Gomibuchi, Tatsuichiro Seto, Yuko Wada, Hajime Ichimura, Yuki Tanaka, Tatsuki Ogasawara, Kenji Okada, Naoko Shiba, Kengo Sakamoto, Daisuke Ido, Takashi Shiina, Masamichi Ohkura, Junichi Nakai, Narumi Uno, Yasuhiro Kazuki, Mitsuo Oshimura, Itsunari Minami, Uichi Ikeda

Research output: Contribution to journalArticle

235 Citations (Scopus)

Abstract

Induced pluripotent stem cells (iPSCs) constitute a potential source of autologous patient-specific cardiomyocytes for cardiac repair, providing a major benefit over other sources of cells in terms of immune rejection. However, autologous transplantation has substantial challenges related to manufacturing and regulation. Although major histocompatibility complex (MHC)-matched allogeneic transplantation is a promising alternative strategy, few immunological studies have been carried out with iPSCs. Here we describe an allogeneic transplantation model established using the cynomolgus monkey (Macaca fascicularis), the MHC structure of which is identical to that of humans. Fibroblast-derived iPSCs were generated from a MHC haplotype (HT4) homozygous animal and subsequently differentiated into cardiomyocytes (iPSC-CMs). Five HT4 heterozygous monkeys were subjected to myocardial infarction followed by direct intra-myocardial injection of iPSC-CMs. The grafted cardiomyocytes survived for 12 weeks with no evidence of immune rejection in monkeys treated with clinically relevant doses of methylprednisolone and tacrolimus, and showed electrical coupling with host cardiomyocytes as assessed by use of the fluorescent calcium indicator G-CaMP7.09. Additionally, transplantation of the iPSC-CMs improved cardiac contractile function at 4 and 12 weeks after transplantation; however, the incidence of ventricular tachycardia was transiently, but significantly, increased when compared to vehicle-treated controls. Collectively, our data demonstrate that allogeneic iPSC-CM transplantation is sufficient to regenerate the infarcted non-human primate heart; however, further research to control post-transplant arrhythmias is necessary.

Original languageEnglish
Pages (from-to)388-391
Number of pages4
JournalNature
Volume538
Issue number7625
DOIs
Publication statusPublished - 2016

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts'. Together they form a unique fingerprint.

  • Cite this

    Shiba, Y., Gomibuchi, T., Seto, T., Wada, Y., Ichimura, H., Tanaka, Y., Ogasawara, T., Okada, K., Shiba, N., Sakamoto, K., Ido, D., Shiina, T., Ohkura, M., Nakai, J., Uno, N., Kazuki, Y., Oshimura, M., Minami, I., & Ikeda, U. (2016). Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature, 538(7625), 388-391. https://doi.org/10.1038/nature19815