Aging and memory effects in superparamagnets and superspin glasses

M. Sasaki, P. E. Jönsson, H. Takayama, H. Mamiya

Research output: Contribution to journalArticlepeer-review

287 Citations (Scopus)

Abstract

Many dense magnetic nanoparticle systems exhibit slow dynamics which is qualitatively indistinguishable from that observed in atomic spin glasses and its origin is attributed to dipole interactions among particle moments (or superspins). However, even in dilute nanoparticle systems where the dipole interactions are vanishingly small, slow dynamics is observed and is attributed solely to a broad distribution of relaxation times which in turn comes from that of the anisotropy energy barriers. To clarify characteristic differences between the two types of slow dynamics, we study a simple model of a noninteracting nanoparticle system (a superparamagnet) analytically as well as ferritin (a superparamagnet) and a dense Fe 3N nanoparticle system (a superspin glass) experimentally. It is found that superparamagnets in fact show aging (a waiting time dependence) of the thermoremanent magnetization as well as various memory effects. We also find some dynamical phenomena peculiar only to superspin glasses such as the flatness of the field-cooled magnetization below the critical temperature and memory effects in the zero-field-cooled magnetization. These dynamical phenomena are qualitatively reproduced by the random energy model, and are well interpreted by the so-called droplet theory in the field of spin-glass study.

Original languageEnglish
Article number104405
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume71
Issue number10
DOIs
Publication statusPublished - 2005 Mar 1

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Aging and memory effects in superparamagnets and superspin glasses'. Together they form a unique fingerprint.

Cite this