TY - JOUR
T1 - Activation currents, sperm entry and surface contractions in ascidian eggs
AU - Pecorella, C.
AU - Tosti, E.
AU - Kyozuka, Keiichiro
AU - Dale, B.
PY - 1993/1/1
Y1 - 1993/1/1
N2 - Spermatozoa from the mollusc Ostrea edulis are capable of fusing to and entering de-chorionated ascidian eggs. During interaction they generate activation currents, comparable to the fertilisation currents induced by homologous spermatozoa. Activation currents are inward at – 80 mV, with a mean initial slope of 111 ± 124 pA/s for Ciona intestinalis eggs and 47 ± 25 pA/s for Phallusia mammillata eggs, while the mean peak currents are 2782 ± 1132 pA and 1523 ± 1668 pA, respectively. The fertilisation and activation currents reverse at a holding potential of 0 mV to + 20 mV, suggesting that oyster sperm and ascidian sperm gate the same channel precursor, a non-specific, large conductance channel described previously (Dale & DeFelice, 1984). In contrast to homologous fertilisation, the activation current is not followed by a polarised contraction of the egg surface, nor other signs of egg activation. Staining eggs with Hoechst 33342 after insemination shows the female nucleus and a single oyster sperm nucleus at the antipode. This suggests a specialised predetermined site at the vegetal pole for sperm entry. Homologous and heterologous spermatozoa delivered, in a large pipette, to localised areas of the egg surface generate fast inward currents of 200–2000 pA, but do not induce contraction of the egg surface. This shows that although channel precursors are located globally over the egg surface, channel activation does not necessarily trigger the contraction wave. Subsequent induction of both a fertilisation current and a contraction by homologous sperm added to the bath, implies a regionalised activation site with an accumulation of channel precursors and a ‘pacemaker’ for the initiation of the contraction wave.
AB - Spermatozoa from the mollusc Ostrea edulis are capable of fusing to and entering de-chorionated ascidian eggs. During interaction they generate activation currents, comparable to the fertilisation currents induced by homologous spermatozoa. Activation currents are inward at – 80 mV, with a mean initial slope of 111 ± 124 pA/s for Ciona intestinalis eggs and 47 ± 25 pA/s for Phallusia mammillata eggs, while the mean peak currents are 2782 ± 1132 pA and 1523 ± 1668 pA, respectively. The fertilisation and activation currents reverse at a holding potential of 0 mV to + 20 mV, suggesting that oyster sperm and ascidian sperm gate the same channel precursor, a non-specific, large conductance channel described previously (Dale & DeFelice, 1984). In contrast to homologous fertilisation, the activation current is not followed by a polarised contraction of the egg surface, nor other signs of egg activation. Staining eggs with Hoechst 33342 after insemination shows the female nucleus and a single oyster sperm nucleus at the antipode. This suggests a specialised predetermined site at the vegetal pole for sperm entry. Homologous and heterologous spermatozoa delivered, in a large pipette, to localised areas of the egg surface generate fast inward currents of 200–2000 pA, but do not induce contraction of the egg surface. This shows that although channel precursors are located globally over the egg surface, channel activation does not necessarily trigger the contraction wave. Subsequent induction of both a fertilisation current and a contraction by homologous sperm added to the bath, implies a regionalised activation site with an accumulation of channel precursors and a ‘pacemaker’ for the initiation of the contraction wave.
KW - Activation currents
KW - Ascidian eggs
KW - Entry sites
UR - http://www.scopus.com/inward/record.url?scp=0027601041&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027601041&partnerID=8YFLogxK
U2 - 10.1017/S0967199400001374
DO - 10.1017/S0967199400001374
M3 - Article
C2 - 8081807
AN - SCOPUS:0027601041
VL - 1
SP - 113
EP - 119
JO - Zygote
JF - Zygote
SN - 0967-1994
IS - 2
ER -