TY - JOUR
T1 - Actin reorganization and morphological changes in human neutrophils stimulated by TNF, GM-CSF, and G-CSF
T2 - The role of MAP kinases
AU - Kutsuna, Haruo
AU - Suzuki, Kenichi
AU - Kamata, Noriko
AU - Kato, Takayuki
AU - Hato, Fumihiko
AU - Mizuno, Kensaku
AU - Kobayashi, Hiromi
AU - Ishii, Masamitsu
AU - Kitagawa, Seiichi
PY - 2004/1
Y1 - 2004/1
N2 - Stimulation of human neutrophils with tumor necrosis factor-α (TNF), granulocyte-macrophage colony-stimulating factor (GM-CSF), or granulocyte CSF (G-CSF) resulted in decreased fluorescence intensity of FITC-phalloidin (actin depolymerization) and morphological changes. Cytokine-induced actin depolymerization was dependent on the concentration of cytokines used as stimuli. The maximal changes were detected at 10 min after stimulation with TNF or GM-CSF and at 20 min after stimulation with G-CSF. Cytokine-induced actin depolymerization was sustained for at least 30 min after stimulation. In contrast, N-formyl-methionyl-leucyl-phenylalanine (FMLP) rapidly (within 45 s) induced an increase in the fluorescence intensity of FITC-phalloidin (actin polymerization) and morphological changes. TNF- and GM-CSF-induced actin depolymerization and morphological changes, but not FMLP-induced responses, were partially inhibited by either PD-98059, an inhibitor of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase, or SB-203580, an inhibitor of p38 MAPK, and were almost completely abolished by these inhibitors in combination. G-CSF-induced responses were almost completely abolished by PD-98059 and were unaffected by SB-203580. These findings are consistent with the ability of these cytokines to activate the distinct MAPK subtype cascade in human neutrophils. Phosphorylated ERK and p38 MAPK were not colocalized with F-actin in neutrophils stimulated by cytokines or FMLP. Furthermore, FMLP-induced polarization and actin polymerization were prevented by cytokine pre-treatment. These findings suggest that TNF, GM-CSF, and G-CSF induce actin depolymerization and morphological changes through activation of ERK and/or p38 MAPK and that cytokine-induced actin reorganization may be partly responsible for the inhibitory effect of these cytokines on neutrophil chemotaxis.
AB - Stimulation of human neutrophils with tumor necrosis factor-α (TNF), granulocyte-macrophage colony-stimulating factor (GM-CSF), or granulocyte CSF (G-CSF) resulted in decreased fluorescence intensity of FITC-phalloidin (actin depolymerization) and morphological changes. Cytokine-induced actin depolymerization was dependent on the concentration of cytokines used as stimuli. The maximal changes were detected at 10 min after stimulation with TNF or GM-CSF and at 20 min after stimulation with G-CSF. Cytokine-induced actin depolymerization was sustained for at least 30 min after stimulation. In contrast, N-formyl-methionyl-leucyl-phenylalanine (FMLP) rapidly (within 45 s) induced an increase in the fluorescence intensity of FITC-phalloidin (actin polymerization) and morphological changes. TNF- and GM-CSF-induced actin depolymerization and morphological changes, but not FMLP-induced responses, were partially inhibited by either PD-98059, an inhibitor of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase, or SB-203580, an inhibitor of p38 MAPK, and were almost completely abolished by these inhibitors in combination. G-CSF-induced responses were almost completely abolished by PD-98059 and were unaffected by SB-203580. These findings are consistent with the ability of these cytokines to activate the distinct MAPK subtype cascade in human neutrophils. Phosphorylated ERK and p38 MAPK were not colocalized with F-actin in neutrophils stimulated by cytokines or FMLP. Furthermore, FMLP-induced polarization and actin polymerization were prevented by cytokine pre-treatment. These findings suggest that TNF, GM-CSF, and G-CSF induce actin depolymerization and morphological changes through activation of ERK and/or p38 MAPK and that cytokine-induced actin reorganization may be partly responsible for the inhibitory effect of these cytokines on neutrophil chemotaxis.
KW - Actin reorganization
KW - Cytokines
KW - Granulocyte-macrophage colony stimulating factor
KW - Mitogen-activated protein kinase
KW - Neutrophil
KW - Tumor necrosis factor-α
UR - http://www.scopus.com/inward/record.url?scp=0347358003&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0347358003&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.00131.2003
DO - 10.1152/ajpcell.00131.2003
M3 - Article
C2 - 12954601
AN - SCOPUS:0347358003
SN - 0363-6143
VL - 286
SP - C55-C64
JO - American Journal of Physiology
JF - American Journal of Physiology
IS - 1 55-1
ER -