A visual object recognition system invariant to scale and rotation

Yasuomi D. Sato, Jenia Jitsev, Christoph Von Der Malsburg

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

We address here the problem of scale and rotation invariant object recognition, making use of a correspondence-based mechanism, in which the identity of an object represented by sensory signals is determined by matching it to a representation stored in memory. The sensory representation is in general affected by various transformations, notably scale and rotation, thus giving rise to the fundamental problem of invariant object recognition. We focus here on a neurally plausible mechanism that deals simultaneously with identification of the object and detection of the transformation, both types of information being important for visual processing. Our mechanism is based on macrocolumnar units. These evaluate identity- and transformation-specific feature similarities, performing competitive selection of the alternatives of their own subtask, and cooperate to make a coherent global decision for the identity, scale and rotation of the object.

Original languageEnglish
Pages (from-to)529-544
Number of pages16
JournalNeural Network World
Volume19
Issue number5
Publication statusPublished - 2009 Dec 18

Keywords

  • Invariance problem
  • Object recognition
  • Subsystem coordination
  • Visual processing

ASJC Scopus subject areas

  • Software
  • Neuroscience(all)
  • Hardware and Architecture
  • Artificial Intelligence

Fingerprint Dive into the research topics of 'A visual object recognition system invariant to scale and rotation'. Together they form a unique fingerprint.

Cite this