A Systematic Study of Tiny YOLO3 Inference: Toward Compact Brainware Processor with Less Memory and Logic Gate

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The emerging of deep neural networks, especially the convolutional neural network (CNN), substantially promotes the fast development of brainware processors in object detection. However, the vast network architecture brings severe challenges to the design of brainware processor, which requires a large number of logic gates and memories. Therefore, a compact brainware processor with less memory and logic gate has a high demand in object detection. Typically, the object detection involves single-shot and multi-shot detectors in accordance with different detection principle. In the early stage, the multi-shot detector has a leading role in solving object detection issues, such as region-based convolutional neural networks (R-CNNs), faster R-CNNs etc. However, the multi-shot detector suffers from a low detection rate comparing with the single-shot detector. The you only look once (YOLO) algorithm, as the state-of-the-art real-time object detection algorithm, receives extensive attention from the academics and industry. Particularly, the lightweight YOLO algorithm, tiny YOLO3, has excellent potential for circuit design of compact brainware processor. Nonetheless, systematic studies of tiny YOLO3 are still missing up to the present. This paper offers a thorough review of the tiny YOLO3 algorithm, which can fill the gap in the field of object detection. Furthermore, the open solutions of compressing the tiny YOLO3 algorithm are proposed from the aspects of algorithm, hardware and emerging technology. The comprehensive study presented in this paper can not only enhance understanding of the tiny YOLO3 algorithm for researchers or engineers but also make a significant contribution to accelerating the development of compact brainware processor.

Original languageEnglish
Article number9154668
Pages (from-to)142931-142955
Number of pages25
JournalIEEE Access
Volume8
DOIs
Publication statusPublished - 2020

Keywords

  • CNN
  • Tiny YOLO3
  • brainware processor
  • deep neural network
  • hardware acceleration

ASJC Scopus subject areas

  • Computer Science(all)
  • Materials Science(all)
  • Engineering(all)

Fingerprint Dive into the research topics of 'A Systematic Study of Tiny YOLO3 Inference: Toward Compact Brainware Processor with Less Memory and Logic Gate'. Together they form a unique fingerprint.

Cite this