A robotic thruster that can handle hairy flexible cable of serpentine robots for disaster inspection

Yu Yamauchi, Toshiaki Fujimoto, Akihiro Ishii, Shingo Araki, Yuichi Ambe, Masashi Konyo, Kenjiro Tadakuma, Satoshi Tadokoro

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Snake-like robots are useful for exploring narrow spaces such as in collapsed buildings after a severe disaster. Two people are usually required for operating serpentine robot, one for pushing and twisting, and the other for controlling the tip. In this paper, we propose a way to control a snake robot with a single operator, by the use of robotic thruster. Further, a robotic thruster has the advantage of improving the estimation of tip position and shape, by measuring the inserted length of the cable. In this study, the focus is on 'hairy' robots, so called because an Active Scope Camera (ASC) is covered by inclined cilia acting as a self-propelling mechanism. When operating a snake robot, the most difficult challenge is to insert it without damaging the cilia. First, opposed flexible rollers are proposed to push the robot whose cylindrical surfaces are covered by tensed flexible wires. The wires sandwich the robotic body between the hairs to avoid damage. Then, by using the rollers, a thruster is proposed which can push and twist the ASC, and measure both the inserted length and twisting angles. Basic performance experiments showed that the thruster could successfully push and twist an ASC of approximately 5 m. The accuracy of the inserted length and twisting angle were less than 10% and 45%, respectively. The thruster was able to push and twist the ASC on flat environments with obstacles, and in a three-dimensional rubble environment.

Original languageEnglish
Title of host publicationAIM 2018 - IEEE/ASME International Conference on Advanced Intelligent Mechatronics
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages107-113
Number of pages7
ISBN (Print)9781538618547
DOIs
Publication statusPublished - 2018 Aug 30
Event2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2018 - Auckland, New Zealand
Duration: 2018 Jul 92018 Jul 12

Publication series

NameIEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
Volume2018-July

Other

Other2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2018
CountryNew Zealand
CityAuckland
Period18/7/918/7/12

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Control and Systems Engineering
  • Computer Science Applications
  • Software

Fingerprint Dive into the research topics of 'A robotic thruster that can handle hairy flexible cable of serpentine robots for disaster inspection'. Together they form a unique fingerprint.

Cite this