TY - JOUR
T1 - A rapid, sensitive, reproducible and cost-effective method for mutation profiling of colon cancer and metastatic lymph nodes
AU - Fumagalli, Debora
AU - Gavin, Patrick G.
AU - Taniyama, Yusuke
AU - Kim, Seung Il
AU - Choi, Hyun Joo
AU - Paik, Soonmyung
AU - Pogue-Geile, Katherine L.
N1 - Funding Information:
The authors would like to thank Melanie Finnigan, Bill Hiller, and Theresa Oeler for help in cutting and cataloging slides, and Hema Liyanage from Sequenom for replexing the assays. This study was supported by Public Health Service grants U10-CA-37377, U10-CA-69974, U10-CA-12027, and U10-CA-69651 from the National Cancer Institute, National Institutes of Health, and Department of Health and Human Services. This project is funded, in part, under a grant with the Pennsylvania Department of Health. The Department specifically disclaims responsibility for any analyses, interpretations or conclusions. The authors retain the right to provide a copy of the final manuscript to the NIH upon acceptance for journal publication, for public archiving in PubMed Central as soon as possible but no later than 12 months after publication by the journal.
PY - 2010/3/16
Y1 - 2010/3/16
N2 - Background: An increasing number of studies show that genetic markers can aid in refining prognostic information and predicting the benefit from systemic therapy. Our goal was to develop a high throughput, cost-effective and simple methodology for the detection of clinically relevant hot spot mutations in colon cancer.Methods: The Maldi-Tof mass spectrometry platform and OncoCarta panel from Sequenom were used to profile 239 colon cancers and 39 metastatic lymph nodes from NSABP clinical trial C-07 utilizing routinely processed FFPET (formalin-fixed paraffin-embedded tissue).Results: Among the 238 common hot-spot cancer mutations in 19 genes interrogated by the OncoCarta panel, mutations were detected in 7 different genes at 26 different nucleotide positions in our colon cancer samples. Twenty-four assays that detected mutations in more than 1% of the samples were reconfigured into a new multiplexed panel, termed here as ColoCarta. Mutation profiling was repeated on 32 mutant samples using ColoCarta and the results were identical to results with OncoCarta, demonstrating that this methodology was reproducible. Further evidence demonstrating the validity of the data was the fact that the mutation frequencies of the most common colon cancer mutations were similar to the COSMIC (Catalog of Somatic Mutations in Cancer) database. The frequencies were 43.5% for KRAS, 20.1% for PIK3CA, and 12.1% for BRAF. In addition, infrequent mutations in NRAS, AKT1, ABL1, and MET were detected. Mutation profiling of metastatic lymph nodes and their corresponding primary tumors showed that they were 89.7% concordant. All mutations found in the lymph nodes were also found in the corresponding primary tumors, but in 4 cases a mutation was present in the primary tumor only.Conclusions: This study describes a high throughput technology that can be used to interrogate DNAs isolated from routinely processed FFPET and identifies the specific mutations that are common to colon cancer. The development of this technology and the ColoCarta panel may provide a mechanism for rapid screening of mutations in clinically relevant genes like KRAS, PIK3CA, and BRAF.Trial Registration: ClinicalTrials.gov: NSABP C-07: NCT00004931.
AB - Background: An increasing number of studies show that genetic markers can aid in refining prognostic information and predicting the benefit from systemic therapy. Our goal was to develop a high throughput, cost-effective and simple methodology for the detection of clinically relevant hot spot mutations in colon cancer.Methods: The Maldi-Tof mass spectrometry platform and OncoCarta panel from Sequenom were used to profile 239 colon cancers and 39 metastatic lymph nodes from NSABP clinical trial C-07 utilizing routinely processed FFPET (formalin-fixed paraffin-embedded tissue).Results: Among the 238 common hot-spot cancer mutations in 19 genes interrogated by the OncoCarta panel, mutations were detected in 7 different genes at 26 different nucleotide positions in our colon cancer samples. Twenty-four assays that detected mutations in more than 1% of the samples were reconfigured into a new multiplexed panel, termed here as ColoCarta. Mutation profiling was repeated on 32 mutant samples using ColoCarta and the results were identical to results with OncoCarta, demonstrating that this methodology was reproducible. Further evidence demonstrating the validity of the data was the fact that the mutation frequencies of the most common colon cancer mutations were similar to the COSMIC (Catalog of Somatic Mutations in Cancer) database. The frequencies were 43.5% for KRAS, 20.1% for PIK3CA, and 12.1% for BRAF. In addition, infrequent mutations in NRAS, AKT1, ABL1, and MET were detected. Mutation profiling of metastatic lymph nodes and their corresponding primary tumors showed that they were 89.7% concordant. All mutations found in the lymph nodes were also found in the corresponding primary tumors, but in 4 cases a mutation was present in the primary tumor only.Conclusions: This study describes a high throughput technology that can be used to interrogate DNAs isolated from routinely processed FFPET and identifies the specific mutations that are common to colon cancer. The development of this technology and the ColoCarta panel may provide a mechanism for rapid screening of mutations in clinically relevant genes like KRAS, PIK3CA, and BRAF.Trial Registration: ClinicalTrials.gov: NSABP C-07: NCT00004931.
UR - http://www.scopus.com/inward/record.url?scp=77950561234&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950561234&partnerID=8YFLogxK
U2 - 10.1186/1471-2407-10-101
DO - 10.1186/1471-2407-10-101
M3 - Article
C2 - 20233444
AN - SCOPUS:77950561234
VL - 10
JO - BMC Cancer
JF - BMC Cancer
SN - 1471-2407
M1 - 101
ER -