TY - JOUR
T1 - A new transcriptome and transcriptome profiling of adult and larval tissue in the box jellyfish Alatina alata
T2 - An emerging model for studying venom, vision and sex
AU - Lewis Ames, Cheryl
AU - Ryan, Joseph F.
AU - Bely, Alexandra E.
AU - Cartwright, Paulyn
AU - Collins, Allen G.
N1 - Funding Information:
Funding for field work (CLA) was provided by University of Maryland Biological Sciences Eugenie Clark Scholarship and Smithsonian Peter Buck Predoctoral research grants, and for RNA-Seq by Paulyn Cartwright through NSF grant DEB–095357. JFR was supported by startup funds from the University of Florida DSP Research Strategic Initiatives #00114464 and University of Florida Office of the Provost Programs. AGC acknowledges the Mary & Robert Pew Public Education Fund, which supported the capture of some of the imagery in Fig. 1.
Publisher Copyright:
© 2016 The Author(s).
PY - 2016/8/17
Y1 - 2016/8/17
N2 - Background: Cubozoans (box jellyfish) are cnidarians that have evolved a number of distinguishing features. Many cubozoans have a particularly potent sting, effected by stinging structures called nematocysts; cubozoans have well-developed light sensation, possessing both image-forming lens eyes and light-sensitive eye spots; and some cubozoans have complex mating behaviors, including aggregations, copulation and internal fertilization. The cubozoan Alatina alata is emerging as a cnidarian model because it forms predictable monthly nearshore breeding aggregations in tropical to subtropical waters worldwide, making both adult and larval material reliably accessible. To develop resources for A. alata, this study generated a functionally annotated transcriptome of adult and larval tissue, applying preliminary differential expression analyses to identify candidate genes involved in nematogenesis and venom production, vision and extraocular sensory perception, and sexual reproduction, which for brevity we refer to as "venom", "vision" and "sex". Results: We assembled a transcriptome de novo from RNA-Seq data pooled from multiple body parts (gastric cirri, ovaries, tentacle (with pedalium base) and rhopalium) of an adult female A. alata medusa and larval planulae. Our transcriptome comprises ~32 K transcripts, after filtering, and provides a basis for analyzing patterns of gene expression in adult and larval box jellyfish tissues. Furthermore, we annotated a large set of candidate genes putatively involved in venom, vision and sex, providing an initial molecular characterization of these complex features in cubozoans. Expression profiles and gene tree reconstruction provided a number of preliminary insights into the putative sites of nematogenesis and venom production, regions of phototransduction activity and fertilization dynamics in A. alata. Conclusions: Our Alatina alata transcriptome significantly adds to the genomic resources for this emerging cubozoan model. This study provides the first annotated transcriptome from multiple tissues of a cubozoan focusing on both the adult and larvae. Our approach of using multiple body parts and life stages to generate this transcriptome effectively identified a broad range of candidate genes for the further study of coordinated processes associated with venom, vision and sex. This new genomic resource and the candidate gene dataset are valuable for further investigating the evolution of distinctive features of cubozoans, and of cnidarians more broadly.
AB - Background: Cubozoans (box jellyfish) are cnidarians that have evolved a number of distinguishing features. Many cubozoans have a particularly potent sting, effected by stinging structures called nematocysts; cubozoans have well-developed light sensation, possessing both image-forming lens eyes and light-sensitive eye spots; and some cubozoans have complex mating behaviors, including aggregations, copulation and internal fertilization. The cubozoan Alatina alata is emerging as a cnidarian model because it forms predictable monthly nearshore breeding aggregations in tropical to subtropical waters worldwide, making both adult and larval material reliably accessible. To develop resources for A. alata, this study generated a functionally annotated transcriptome of adult and larval tissue, applying preliminary differential expression analyses to identify candidate genes involved in nematogenesis and venom production, vision and extraocular sensory perception, and sexual reproduction, which for brevity we refer to as "venom", "vision" and "sex". Results: We assembled a transcriptome de novo from RNA-Seq data pooled from multiple body parts (gastric cirri, ovaries, tentacle (with pedalium base) and rhopalium) of an adult female A. alata medusa and larval planulae. Our transcriptome comprises ~32 K transcripts, after filtering, and provides a basis for analyzing patterns of gene expression in adult and larval box jellyfish tissues. Furthermore, we annotated a large set of candidate genes putatively involved in venom, vision and sex, providing an initial molecular characterization of these complex features in cubozoans. Expression profiles and gene tree reconstruction provided a number of preliminary insights into the putative sites of nematogenesis and venom production, regions of phototransduction activity and fertilization dynamics in A. alata. Conclusions: Our Alatina alata transcriptome significantly adds to the genomic resources for this emerging cubozoan model. This study provides the first annotated transcriptome from multiple tissues of a cubozoan focusing on both the adult and larvae. Our approach of using multiple body parts and life stages to generate this transcriptome effectively identified a broad range of candidate genes for the further study of coordinated processes associated with venom, vision and sex. This new genomic resource and the candidate gene dataset are valuable for further investigating the evolution of distinctive features of cubozoans, and of cnidarians more broadly.
KW - Cubozoa
KW - Embryo
KW - Expression patterns
KW - Eye
KW - Gametogenesis
KW - Pedalium
KW - Planulae
KW - Spawning aggregations
KW - Sperm
KW - Sting
UR - http://www.scopus.com/inward/record.url?scp=84982237045&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84982237045&partnerID=8YFLogxK
U2 - 10.1186/s12864-016-2944-3
DO - 10.1186/s12864-016-2944-3
M3 - Article
C2 - 27535656
AN - SCOPUS:84982237045
SN - 1471-2164
VL - 17
JO - BMC Genomics
JF - BMC Genomics
IS - 1
M1 - 650
ER -