A new technology for revascularization of cerebral embolism using liquid jet impact

Tetsuya Kodama, Kazuyoshi Takayama, Hiroshi Uenohara

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Revascularization time is the dominant factor in the treatment of acute cerebral embolism. In this paper we describe a rapid revascularization therapy using liquid jets generated by the interaction of gas bubbles with shock waves, which impact on the thrombi. The interaction of a shock wave with a gas bubble attached to an artificial thrombus which was inserted into a tube model of a cerebral artery was investigated. The shock wave was generated by detonating a microexplosive pellet. The overpressure of the shock wave was 3.0 ± 0.6 MPa (n = 7) and 12.7 ± 0.4 MPa (n = 3). The initial air bubble radii were varied from 0.87 mm to 2.18 min. The subsequent collapse of the bubble was photographed using a high-speed framing camera, and the liquid jet penetrating into the artificial thrombus was visualized using x-ray photography. The penetration depth of the liquid jet increased with increasing bubble size. There was an optimal separation distance between the bubble and the shock wave source to obtain the maximum penetration depth. Liquid jets have the potential to penetrate through thrombi in as little as a few microseconds, and with very efficient ablation.

Original languageEnglish
Pages (from-to)2355-2367
Number of pages13
JournalPhysics in Medicine and Biology
Volume42
Issue number12
DOIs
Publication statusPublished - 1997 Dec 1

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'A new technology for revascularization of cerebral embolism using liquid jet impact'. Together they form a unique fingerprint.

Cite this