A new position and attitude measurement method for complex shape models with non-circular cross section in magnetic suspension and balance system

Masatoshi Horiguchi, Yuji Saito, Taku Nonomura, Keisuke Asai, Hideo Sawada, Yasufumi Konishi, Hiroyuki Okuizumi, Shigeru Obayashi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this study, the influence of the position measurement method of a magnetic suspension and balance system (MSBS) for complex models such as a spaceplane was investigated, and a new position measurement method of MSBS for the spaceplane was developed. The new position measurement method can avoid complex shape parts such as wings by placing the sensor camera at 45 degrees rotated position around the x-axis of 1.0-m MSBS. However, the second-order nonlinear position error was found to occur in this position measurement method. Therefore, it is possible to reduce the error of position by correcting the sensor output value (pixels) in which the second-order nonlinear error occurs. We succeeded in levitating the space return model within the calibration range.

Original languageEnglish
Title of host publicationAIAA Scitech 2021 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
Pages1-12
Number of pages12
ISBN (Print)9781624106095
Publication statusPublished - 2021
EventAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021 - Virtual, Online
Duration: 2021 Jan 112021 Jan 15

Publication series

NameAIAA Scitech 2021 Forum

Conference

ConferenceAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021
CityVirtual, Online
Period21/1/1121/1/15

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'A new position and attitude measurement method for complex shape models with non-circular cross section in magnetic suspension and balance system'. Together they form a unique fingerprint.

Cite this