TY - JOUR
T1 - A new lysozyme from the eastern oyster, Crassostrea virginica, and a possible evolutionary pathway for i-type lysozymes in bivalves from host defense to digestion
AU - Xue, Qinggang
AU - Hellberg, Michael E.
AU - Schey, Kevin L.
AU - Itoh, Naoki
AU - Eytan, Ron I.
AU - Cooper, Richard K.
AU - La Peyre, Jerome F.
N1 - Funding Information:
We thank Steve Smith at the Protein Chemistry Laboratory of the University of Texas Medical Branch, Galveston, Texas, for N-terminal sequencing. We acknowledge the MUSC Mass Spectrometry Facility for access to mass spectrometry instrumentation. This research was funded by the Louisiana Sea Grant College Program project (NA16RG2249) to QGX and JFL and by an NSF grant (OCE-0550270) to MEH. Portions of this research were conducted with high performance computational resources provided by the Louisiana Optical Network Initiative.
PY - 2010
Y1 - 2010
N2 - Background. Lysozymes are enzymes that lyse bacterial cell walls, an activity widely used for host defense but also modified in some instances for digestion. The biochemical and evolutionary changes between these different functional forms has been well-studied in the c-type lysozymes of vertebrates, but less so in the i-type lysozymes prevalent in most invertebrate animals. Some bivalve molluscs possess both defensive and digestive lysozymes. Results. We report a third lysozyme from the oyster Crassostrea virginica, cv-lysozyme 3. The chemical properties of cv-lysozyme 3 (including molecular weight, isoelectric point, basic amino acid residue number, and predicted protease cutting sites) suggest it represents a transitional form between lysozymes used for digestion and immunity. The cv-lysozyme 3 protein inhibited the growth of bacteria (consistent with a defensive function), but semi-quantitative RT-PCR suggested the gene was expressed mainly in digestive glands. Purified cv-lysozyme 3 expressed maximum muramidase activity within a range of pH (7.0 and 8.0) and ionic strength (I = 0.005-0.01) unfavorable for either cv-lysozyme 1 or cv-lysozyme 2 activities. The topology of a phylogenetic analysis of cv-lysozyme 3 cDNA (full length 663 bp, encoding an open reading frame of 187 amino acids) is also consistent with a transitional condition, as cv-lysozyme 3 falls at the base of a monophyletic clade of bivalve lysozymes identified from digestive glands. Rates of nonsynonymous substitution are significantly high at the base of this clade, consistent with an episode of positive selection associated with the functional transition from defense to digestion. Conclusion. The pattern of molecular evolution accompanying the shift from defensive to digestive function in the i-type lysozymes of bivalves parallels those seen for c-type lysozymes in mammals and suggests that the lysozyme paralogs that enhance the range of physiological conditions for lysozyme activity may provide stepping stones between defensive and digestive forms.
AB - Background. Lysozymes are enzymes that lyse bacterial cell walls, an activity widely used for host defense but also modified in some instances for digestion. The biochemical and evolutionary changes between these different functional forms has been well-studied in the c-type lysozymes of vertebrates, but less so in the i-type lysozymes prevalent in most invertebrate animals. Some bivalve molluscs possess both defensive and digestive lysozymes. Results. We report a third lysozyme from the oyster Crassostrea virginica, cv-lysozyme 3. The chemical properties of cv-lysozyme 3 (including molecular weight, isoelectric point, basic amino acid residue number, and predicted protease cutting sites) suggest it represents a transitional form between lysozymes used for digestion and immunity. The cv-lysozyme 3 protein inhibited the growth of bacteria (consistent with a defensive function), but semi-quantitative RT-PCR suggested the gene was expressed mainly in digestive glands. Purified cv-lysozyme 3 expressed maximum muramidase activity within a range of pH (7.0 and 8.0) and ionic strength (I = 0.005-0.01) unfavorable for either cv-lysozyme 1 or cv-lysozyme 2 activities. The topology of a phylogenetic analysis of cv-lysozyme 3 cDNA (full length 663 bp, encoding an open reading frame of 187 amino acids) is also consistent with a transitional condition, as cv-lysozyme 3 falls at the base of a monophyletic clade of bivalve lysozymes identified from digestive glands. Rates of nonsynonymous substitution are significantly high at the base of this clade, consistent with an episode of positive selection associated with the functional transition from defense to digestion. Conclusion. The pattern of molecular evolution accompanying the shift from defensive to digestive function in the i-type lysozymes of bivalves parallels those seen for c-type lysozymes in mammals and suggests that the lysozyme paralogs that enhance the range of physiological conditions for lysozyme activity may provide stepping stones between defensive and digestive forms.
UR - http://www.scopus.com/inward/record.url?scp=77954552336&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77954552336&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-10-213
DO - 10.1186/1471-2148-10-213
M3 - Article
C2 - 20633278
AN - SCOPUS:77954552336
VL - 10
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
SN - 1471-2148
IS - 1
M1 - 213
ER -