A molecular dynamics study on heat transfer characteristics over the interface of self-assembled monolayer and water solvent

Gota Kikugawa, Taku Ohara, Toru Kawaguchi, Ikuya Kinefuchi, Yoichiro Matsumoto

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We performed molecular dynamics simulations of the interface which is comprised of self-assembled monolayer (SAM) and water solvent to investigate heat transfer characteristics. In particular, local thermal boundary conductance (TBC), which is an inverse of so-called Kapitza resistance, at the SAM-solvent interface was evaluated by using the nonequilibrium MD (NEMD) technique in which the one-dimensional thermal energy flux was imposed across the interface. By using two kinds of SAM terminal with hydrophobic and hydrophilic properties, the local TBCs of these interfaces with water solvent were evaluated, and the result showed a critical difference due to an affinity between SAM and solvent. In order to elucidate the reason for this difference, microscopic components contributing to thermal energy flux across the interface were evaluated in detail, i.e., the total thermal energy flux is decomposed into the contribution of molecular transport and that of energy exchange by molecular interactions.

Original languageEnglish
Title of host publicationASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011
Publication statusPublished - 2011 Dec 1
EventASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011 - Honolulu, HI, United States
Duration: 2011 Mar 132011 Mar 17

Other

OtherASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011
CountryUnited States
CityHonolulu, HI
Period11/3/1311/3/17

ASJC Scopus subject areas

  • Energy Engineering and Power Technology

Fingerprint Dive into the research topics of 'A molecular dynamics study on heat transfer characteristics over the interface of self-assembled monolayer and water solvent'. Together they form a unique fingerprint.

Cite this