A Millimeter-Wave WPAN Adaptive Phased Array Control Method Using Low-Frequency Part of Signal for Self-Directed System

Tuan Thanh Ta, Shoichi Tanifuji, Akinori Taira, Suguru Kameda, Noriharu Suematsu, Tadashi Takagi, Kazuo Tsubouchi

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

In this paper, we propose a self-directed adaptive phased array control method using the low-frequency part of the signal for a millimeter-wave wireless personal area network, which can reduce the hardware requirement and power consumption compared with those of the conventional digital beamforming method. The signal from each element antenna of the antenna array is phase shifted and down converted to the baseband and then divided into two paths. The first paths are low-pass filtered to extract the low-frequency part of the signals for beamforming control. The second paths from all antennas are combined in-phase in an analog domain and then sampled by two high-speed A/D converters for demodulation. A beamforming algorithm using the sampled low-frequency part of the signal is also proposed. The beamforming calculation time is established as a function of the signal-to-noise ratio, the bandwidth of the low-frequency part, and the required phase control accuracy. The calculated values match the measured results. Using the IEEE 802.15.3c specifications with an eight-element array antenna, the calculation time is less than 5 μs for initial beam establishment and less than 30 μs for beam tracking. Therefore, high-speed beamforming is possible while reducing the power consumption.

Original languageEnglish
Article number7128749
Pages (from-to)2682-2691
Number of pages10
JournalIEEE Transactions on Microwave Theory and Techniques
Volume63
Issue number8
DOIs
Publication statusPublished - 2015 Aug 1

Keywords

  • Fast tracking
  • millimeter wave
  • phased array antenna (PAA)
  • self-directed
  • wireless communication

ASJC Scopus subject areas

  • Radiation
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A Millimeter-Wave WPAN Adaptive Phased Array Control Method Using Low-Frequency Part of Signal for Self-Directed System'. Together they form a unique fingerprint.

  • Cite this