A low phase noise FBAR based multiband VCO design

Guoqiang Zhang, Abhay Kochhar, Keiji Yoshida, Shuji Tanaka, Kenya Hashimoto, Masayoshi Esashi, Haruichi Kanaya, Ramesh K. Pokharel

Research output: Contribution to journalLetterpeer-review

2 Citations (Scopus)

Abstract

In this letter, design methodlogy of a low phase noise multiband film bulk acoustic resonator (FBAR) based voltage controlled oscillator (FBAR-VCO) is presented. It employs a 1.9GHz cross-coupled FBAR-VCO core, and extends oscillation to 0.65GHz, 0.98GHz, 1.96GHz and 3.92GHz by a divider and a multiplier. By analyzing the low frequency instability and proposing the solution based on a capacitor, cross-coupled architecture is employed in 1.9GHz FBAR-VCO core and phase noise degradation is extensively studied for extended frequencies. By considering the effect of transistors' size on the Q-factor and impedance of FBAR, excellent phase noise and high loop gain are obtained. The post-layout simulation shows the proposed multiband FBAR-VCO achieves the lowest phase noise below 150dBc/Hz at 1MHz offset frequency.

Original languageEnglish
JournalIEICE Electronics Express
Volume10
Issue number13
DOIs
Publication statusPublished - 2013 Jul 17

Keywords

  • FBAR
  • Low frequency instability
  • Low phase noise
  • Multiband
  • VCO

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A low phase noise FBAR based multiband VCO design'. Together they form a unique fingerprint.

Cite this