TY - JOUR
T1 - A Low-mass Binary Neutron Star
T2 - Long-term Ejecta Evolution and Kilonovae with Weak Blue Emission
AU - Kawaguchi, Kyohei
AU - Fujibayashi, Sho
AU - Shibata, Masaru
AU - Tanaka, Masaomi
AU - Wanajo, Shinya
N1 - Publisher Copyright:
© 2021. The American Astronomical Society. All rights reserved..
PY - 2021/6/1
Y1 - 2021/6/1
N2 - We study the long-term evolution of ejecta formed in a binary neutron star (NS) merger that results in a long-lived remnant NS by performing a hydrodynamics simulation with the outflow data of a numerical relativity simulation as the initial condition. At the homologously expanding phase, the total ejecta mass reaches ≈ 0.1 M o˙ with an average velocity of ≈ 0.1 c and lanthanide fraction of ≈ 0.005. We further perform the radiative transfer simulation employing the obtained ejecta profile. We find that, contrary to a naive expectation from the large ejecta mass and low lanthanide fraction, the optical emission is not as bright as that in GW170817/AT2017gfo, while the infrared emission can be brighter. This light-curve property is attributed to preferential diffusion of photons toward the equatorial direction due to the prolate ejecta morphology; large opacity contribution of Zr, Y, and lanthanides; and low specific heating rate of the ejecta. Our results suggest that these light-curve features could be used as an indicator for the presence of a long-lived remnant NS. We also found that the bright optical emission broadly consistent with GW170817/AT2017gfo is realized for the case in which the high-velocity ejecta components in the polar region are suppressed. These results suggest that the remnant in GW170817/AT2017gfo is unlikely to be a long-lived NS but might have collapsed to a black hole within O (0.1) s.
AB - We study the long-term evolution of ejecta formed in a binary neutron star (NS) merger that results in a long-lived remnant NS by performing a hydrodynamics simulation with the outflow data of a numerical relativity simulation as the initial condition. At the homologously expanding phase, the total ejecta mass reaches ≈ 0.1 M o˙ with an average velocity of ≈ 0.1 c and lanthanide fraction of ≈ 0.005. We further perform the radiative transfer simulation employing the obtained ejecta profile. We find that, contrary to a naive expectation from the large ejecta mass and low lanthanide fraction, the optical emission is not as bright as that in GW170817/AT2017gfo, while the infrared emission can be brighter. This light-curve property is attributed to preferential diffusion of photons toward the equatorial direction due to the prolate ejecta morphology; large opacity contribution of Zr, Y, and lanthanides; and low specific heating rate of the ejecta. Our results suggest that these light-curve features could be used as an indicator for the presence of a long-lived remnant NS. We also found that the bright optical emission broadly consistent with GW170817/AT2017gfo is realized for the case in which the high-velocity ejecta components in the polar region are suppressed. These results suggest that the remnant in GW170817/AT2017gfo is unlikely to be a long-lived NS but might have collapsed to a black hole within O (0.1) s.
UR - http://www.scopus.com/inward/record.url?scp=85107551842&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85107551842&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/abf3bc
DO - 10.3847/1538-4357/abf3bc
M3 - Article
AN - SCOPUS:85107551842
SN - 0004-637X
VL - 913
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 100
ER -