A Geochemical Review of Amphibolite, Granulite, and Eclogite Facies Lithologies: Perspectives on the Deep Continental Crust

Laura G. Sammon, William F. McDonough

Research output: Contribution to journalArticlepeer-review

Abstract

Debate abounds regarding the composition of the deep (middle + lower) continental crust. Exhumed medium- and high-grade metamorphic rocks, which range in composition from mafic to felsic, provide information about the bulk composition of the deep crust. This study presents a global compilation of geochemical data on amphibolite (n = 6,500), granulite (n = 4,000), and eclogite (n = 200) facies lithologies and quantifies trends, uncertainties, and sources of bias in the deep crust sampling. The continental crust's Daly Gap is well documented in amphibolite and most granulite facies lithologies. Igneous differentiation processes likely control the compositional layering in the crust. Al2O3, Lu, and Yb vary little from top to bottom of the crust. In contrast, SiO2, light rare earth elements, Th, and U show a wider range of abundances throughout. Because of oversampling of mafic lithologies, our predictions are a lower bound on middle crustal composition. Additionally, the distinction between granulite facies terrains (intermediate SiO2, high heat production, high incompatibles) or granulite facies xenoliths (low SiO2, low heat production, low incompatibles) as being the best analogs of the deep crust remains disputable. We have incorporated both rock types, along with amphibolite facies lithologies, to define a deep crustal composition that approaches 57.6 wt.% SiO2. This number, however, represents a compositional middle ground; the shallower parts of the deep crust (middle crust) resemble quartz monzonite while the deepest portions (lower crust) more resemble a Ca-rich monzonite. Future studies should analyze more closely the depth dependent trends in deep crustal composition to develop composition models that are not limited to a three-layer crust.

Original languageEnglish
Article numbere2021JB022791
JournalJournal of Geophysical Research: Solid Earth
Volume126
Issue number12
DOIs
Publication statusPublished - 2021 Dec

Keywords

  • Geochemical modeling
  • amphibolite
  • deep crust
  • eclogite
  • granulite
  • lower crust
  • middle crust

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'A Geochemical Review of Amphibolite, Granulite, and Eclogite Facies Lithologies: Perspectives on the Deep Continental Crust'. Together they form a unique fingerprint.

Cite this