A decentralized control scheme for orchestrating versatile arm movements in ophiuroid omnidirectional locomotion

Wataru Watanabe, Takeshi Kano, Shota Suzuki, Akio Ishiguro

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)


Autonomous decentralized control is a key concept for understanding the mechanism underlying the adaptive and versatile behaviour of animals. Although the design methodology of decentralized control based on a dynamical system approach that can impart adaptability by using coupled oscillators has been proposed in previous studies, it cannot reproduce the versatility of animal behaviours comprehensively. Therefore, our objective is to understand behavioural versatility from the perspective of well-coordinated rhythmic and non-rhythmic movements. To this end, we focus on ophiuroids as a simple good model of living organisms that exhibit spontaneous role assignment of rhythmic and non-rhythmic arm movements, and we model such arm movements by using an active rotator model that can describe both oscillatory and excitatory properties. Simulation results show that the spontaneous role assignment of arm movements is successfully realized by using the proposed model, and the simulated locomotion is qualitatively equivalent to the locomotion of real ophiuroids. This fact can potentially facilitate a better understanding of the control mechanism responsible for the orchestration of versatile arm movements in ophiuroid omnidirectional locomotion.

Original languageEnglish
Pages (from-to)102-109
Number of pages8
JournalJournal of the Royal Society Interface
Issue number66
Publication statusPublished - 2012 Jan 7


  • Active rotator model
  • Autonomous decentralized control
  • Behavioural versatility
  • Ophiuroid omnidirectional locomotion

ASJC Scopus subject areas

  • Biotechnology
  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering


Dive into the research topics of 'A decentralized control scheme for orchestrating versatile arm movements in ophiuroid omnidirectional locomotion'. Together they form a unique fingerprint.

Cite this