A comparative long-term operation using up-flow anaerobic sludge blanket (UASB) and anaerobic membrane bioreactor (AnMBR) for the upgrading of anaerobic treatment of N, N-dimethylformamide-containing wastewater

Lu Li, Zhe Kong, Yi Xue, Tianjie Wang, Hiroyuki Kato, Yu You Li

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Synthetic industrial wastewater containing approximately 2000 mg/L N, N-dimethylformamide (DMF) was treated using a lab-scale anaerobic sludge blanket (UASB) and an anaerobic membrane bioreactor (AnMBR) in this study. The inoculum consisted of two sources of sludge: Co-culture of anaerobic digested sludge (ADS) with DMF-hydrolyzing activated sludge (DAS) for the AnMBR, and co-culture of anaerobic granular sludge (AGS) with DAS for the UASB. Effective DMF methanogenic degradation of nearly 100% removal was achieved in both reactors on the first day. Both reactors obtained excellent DMF removal efficiency and high methane production under a low organic loading rate (OLR) of around 3–4 g COD/L/d. However, excessive elevation of OLR significantly limited DMF hydrolysis. When OLR exceeded 6 g COD/L/d, the removal efficiency and methane production in both reactors dramatically dropped. Despite their different forms and shapes, the ADS and AGS both provide methanogens which are responsible for methanogenesis. The UASB tolerated a higher OLR while the AnMBR was limited by membrane fouling due to the increased sludge concentration. However, the AnMBR obtained high-quality effluent without suspended solid. Whether DMF can be effectively degraded depends on DAS, in which abundant DMF-hydrolyzing bacteria (DHB) provide sufficient quantities of the hydrolytic enzyme for effective hydrolysis of DMF. However, these DHB were facultative and were also identified as denitrifying bacteria which require nitrate as the electron acceptor or otherwise survive under the aerobic condition. They gradually decayed rather than proliferated and were outcompeted by methanogens. Therefore, it is conceivable that a slight dosage of nitrate would enrich the abundance of DHB in both the UASB and the AnMBR, and provide a sufficient quantity of enzymes for the DMF hydrolysis. The cultivation of the anaerobic DMF-degrading granular sludge using the UASB is considered an upgraded solution to the effective treatment of DMF-containing wastewater.

Original languageEnglish
Article number134370
JournalScience of the Total Environment
Volume699
DOIs
Publication statusPublished - 2020 Jan 10

Keywords

  • AnMBR
  • Anaerobic digestion
  • Hydrolysis
  • Methanogenic degradation
  • N, N-dimethylformamide
  • UASB

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution

Fingerprint

Dive into the research topics of 'A comparative long-term operation using up-flow anaerobic sludge blanket (UASB) and anaerobic membrane bioreactor (AnMBR) for the upgrading of anaerobic treatment of N, N-dimethylformamide-containing wastewater'. Together they form a unique fingerprint.

Cite this