4-Hydroxy-2, 3-nonenal activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells

Kazuhiro Kikuta, Atsushi Masamune, Masahiro Satoh, Noriaki Suzuki, Tooru Shimosegawa

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

Aim: Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis, where oxidative stress is thought to play a key role. 4-hydroxy-2,3-nonenal (HNE) is generated endogenously during the process of lipid peroxidation, and has been accepted as a mediator of oxidative stress. The aim of this study was to clarify the effects of HNE on the activation of signal transduction pathways and cellular functions in PSCs. Methods: PSCs were isolated from the pancreas of male Wistar rats after perfusion with collagenase P, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. PSCs were treated with physiologically relevant and non-cytotoxic concentrations (up to 5 μmol/L) of HNE. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay. Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. Cell proliferation was assessed by measuring the incorporation of 5-bromo-2′-deoxyuridine. Production of type I collagen and monocyte chemoattractant protein-1 was determined by enzyme-linked immunosorbent assay. The effect of HNE on the transformation of freshly isolated PSCs in culture was also assessed. Results: HNE activated activator protein-1, but not nuclear factor κB. In addition, HNE activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. HNE increased type I collagen production through the activation of p38 MAP kinase and c-Jun N-terminal kinase. HNE did not alter the proliferation, or monocyte chemoattractant protein-1 production. HNE did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype. Conclusion: Specific activation of these signal transduction pathways and altered cell functions such as collagen production by HNE may play a role in the pathogenesis of pancreatic disorders.

Original languageEnglish
Pages (from-to)2344-2351
Number of pages8
JournalWorld Journal of Gastroenterology
Volume10
Issue number16
DOIs
Publication statusPublished - 2004 Aug 15

ASJC Scopus subject areas

  • Gastroenterology

Fingerprint

Dive into the research topics of '4-Hydroxy-2, 3-nonenal activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells'. Together they form a unique fingerprint.

Cite this