3D sound-space sensing method based on numerous symmetrically arranged microphones

Shuichi Sakamoto, Satoshi Hongo, Yôiti Suzuki

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

Sensing and reproduction of precise sound-space information is important to realize highly realistic audio communications. This study was conducted to realize high-precision sensors of 3D sound-space information for transmission to distant places and for preservation of sound data for the future. Proposed method comprises a compact and spherical object with numerous microphones. Each recorded signal from multiple microphones that are uniformly distributed on the sphere is simply weighted and summed to synthesize signals to be presented to a listener's left and right ears. The calculated signals are presented binaurally via ordinary binaural systems such as headphones. Moreover, the weight can be changed according to a human's 3D head movement. A human's 3D head movement is well known to be a crucially important factor to facilitate human spatial hearing. For accurate spatial hearing, 3D soundspace information is acquired as accurately reflecting the listener's head movement. We named the proposed method SENZI (Symmetrical object with ENchased ZIllion microphones). The results of computer simulations demonstrate that our proposed SENZI outperforms a conventional method (binaural Ambisonics). It can sense 3D sound-space with high precision over a wide frequency range.

Original languageEnglish
Pages (from-to)1893-1901
Number of pages9
JournalIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
VolumeE97-A
Issue number9
DOIs
Publication statusPublished - 2014 Sep

Keywords

  • Head-related transfer function (HRTF)
  • Sound field recording
  • Spherical microphone array
  • Tele-existence

ASJC Scopus subject areas

  • Signal Processing
  • Computer Graphics and Computer-Aided Design
  • Electrical and Electronic Engineering
  • Applied Mathematics

Fingerprint Dive into the research topics of '3D sound-space sensing method based on numerous symmetrically arranged microphones'. Together they form a unique fingerprint.

Cite this