2-Isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide (OPB-9195) treatment inhibits the development of intimal thickening after balloon injury of rat carotid artery: role of glycoxidation and lipoxidation reactions in vascular tissue damage

Toshio Miyata, Shintaro Ishikawa, Koichi Asahi, Reiko Inagi, Daisuke Suzuki, Katsunori Horie, Kunihiko Tatsumi, Kiyoshi Kurokawa

Research output: Contribution to journalArticlepeer-review

87 Citations (Scopus)

Abstract

We have pursued the hypothesis that the carbonyl modification of proteins by glycoxidation and lipoxidation reactions plays a role in atherogenesis. Human atherosclerotic tissues with fatty streaks and uremic arteriosclerotic tissues were examined, with specific antibodies, to detect protein adducts formed with carbonyl compounds by glycoxidation or lipoxidation reactions, i.e. advanced glycation end products (AGEs) or glycoxidation products, such as carboxymethyllysine (CML) and pentosidine, and lipoxidation products, such as malondialdehyde (MDA)-lysine and 4-hydroxy-nonenal (HNE)-protein adduct. All the four adducts were identified in the proliferative intima and in macrophage-rich fatty streaks. If the carbonyl modification is not a mere result but is a contributor to atherogenesis, inhibition of glycoxidation and lipoxidation reactions might prevent vascular tissue damage. We tested this hypothesis in rats following balloon injury of their carotid arteries, a model exhibiting a remarkable intimal thickening, which are stained positive for all the four adducts. Oral administration of 2-isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide (OPB-9195), an inhibitor of both glycoxidation and lipoxidation reactions, in rats following balloon injury effectively prevented the intimal thickening. These data suggest a role for the carbonyl modification of proteins by glycoxidation and lipoxidation reactions in most, if not all, types of vascular tissue damage ('carbonyl stress'), and the usefulness of inhibitors of carbonyl reactions for the treatment of vascular tissue damage. Copyright (C) 1999 Federation of European Biochemical Societies.

Original languageEnglish
Pages (from-to)202-206
Number of pages5
JournalFEBS Letters
Volume445
Issue number1
DOIs
Publication statusPublished - 1999 Feb 19

Keywords

  • Advanced glycation end product
  • Carbonyl compound
  • Glycoxidation
  • Intimal thickening
  • Lipoxidation
  • Rat carotid artery balloon injury

ASJC Scopus subject areas

  • Biophysics
  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Genetics
  • Cell Biology

Fingerprint Dive into the research topics of '2-Isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide (OPB-9195) treatment inhibits the development of intimal thickening after balloon injury of rat carotid artery: role of glycoxidation and lipoxidation reactions in vascular tissue damage'. Together they form a unique fingerprint.

Cite this